Option 3 : 60°

**Given**

3cot A + tan A - 2√3 = 0

**Formula Used**

tan 30° = 1/√3, cot 30° = √3

tan 45° = cot 45° = 1

tan 60° = √3, cot 60° = 1/√3

**Calculation:**

3cot A + tan A - 2√3 = 0

⇒ By option (1), if θ = 30°

3 cot 30° + tan 30° - 2√3 = 0

⇒ 3√3 + 1/√3 - 2√3 = 0

⇒ 9 + 1 - 6 = 0

Not satisfy the equation

Now takes option (2), θ = 45°

3 cot 45° + tan 45° - 2√3 = 0

⇒ 3 + 1 - 2√3 = 0

Not satisfy the equation

Now, takes option (3), θ = 60°

3 cot 60° + tan 60° - 2√3 = 0

⇒ √3 + √3 - 2√3 = 0

⇒ 0 = 0

Above equation satisfy from option (3)

**∴ The required value of A is 60°**